Explorative Study on Volatile Organic Compounds of Cinnamon Based on GC-IMS

Author:

Pan Yu1ORCID,Qiao Liya1,Liu Shanshuo2,He Ye2,Huang Danna1ORCID,Wu Wuwei1,Liu Yingying3,Chen Lu1ORCID,Huang Dan2ORCID

Affiliation:

1. National Engineering Research Center of Southwest Endangered Medicinal Resource Development, Guangxi Zhuang Autonomous Region Chinese Medicinal Materials Product Quality Supervision and Inspection Station, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China

2. State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China

3. Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China

Abstract

Cinnamon is one of the most popular spices worldwide, and volatile organic compounds (VOCs) are its main metabolic products. The misuse or mixing of cinnamon on the market is quite serious. This study used gas chromatography-ion migration spectroscopy (GC-IMS) technology to analyze the VOCs of cinnamon samples. The measurement results showed that 66 VOCs were detected in cinnamon, with terpenes being the main component accounting for 45.45%, followed by aldehydes accounting for 21.21%. The content of esters and aldehydes was higher in RG-01, RG-02, and RG-04; the content of alcohols was higher in RG-01; and the content of ketones was higher in RG-02. Principal component analysis, cluster analysis, and partial least squares regression analysis can be performed on the obtained data to clearly distinguish cinnamon. According to the VIP results of PLS-DA, 1-Hexanol, 2-heptanone, ethanol, and other substances are the main volatile substances that distinguish cinnamon. This study combined GC-IMS technology with chemometrics to accurately identify cinnamon samples, providing scientific guidance for the efficient utilization of cinnamon. At the same time, this study is of great significance for improving the relevant quality standards of spices and guiding the safe use of spices.

Funder

Guangxi Science and Technology Base and Talent Special Project

Nanning Science & Technology Programmer

Research Project from Guangxi Botanical Garden of Medicinal Plants

Guangxi Zhuang Autonomous Region Administration of traditional Chinese Medicine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3