New Implications of Metabolites and Free Fatty Acids in Quality Control of Crossbred Wagyu Beef during Wet Aging Cold Storage

Author:

Ueda Shuji1ORCID,Yoshida Yuka2,Kebede Biniam3ORCID,Kitamura Chiaki1,Sasaki Ryo4,Shinohara Masakazu5,Fukuda Itsuko1ORCID,Shirai Yasuhito1ORCID

Affiliation:

1. Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan

2. Japan Meat Science and Technology Institute, Tokyo 150-0013, Japan

3. Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand

4. Food Oil and Fat Research Laboratory, Miyoshi Oil & Fat Co., Ltd., Tokyo 124-8510, Japan

5. The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan

Abstract

Efficient cold-chain delivery is essential for maintaining a sustainable global food supply. This study used metabolomic analysis to examine meat quality changes during the “wet aging” of crossbred Wagyu beef during cold storage. The longissimus thoracic (Loin) and adductor muscles (Round) of hybrid Wagyu beef, a cross between the Japanese Black and Holstein–Friesian breeds, were packaged in vacuum film and refrigerated for up to 40 days. Sensory evaluation indicated an increase in the umami and kokumi taste owing to wet aging. Comprehensive analysis using gas chromatography-mass spectrometry identified metabolite changes during wet aging. In the Loin, 94 metabolites increased, and 24 decreased; in the Round, 91 increased and 18 decreased. Metabolites contributing to the umami taste of the meat showed different profiles during wet aging. Glutamic acid increased in a cold storage-dependent manner, whereas creatinine and inosinic acid degraded rapidly even during cold storage. In terms of lipids, wet aging led to an increase in free fatty acids. In particular, linoleic acid, a polyunsaturated fatty acid, increased significantly among the free fatty acids. These results provide new insight into the effects of wet aging on Wagyu-type beef, emphasizing the role of free amino acids, organic acids, and free fatty acids generated during cold storage.

Funder

Japan Racing Association

Ito foundation

Agriculture and Livestock Industries Co., Ltd.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3