Decision-Making Teaching Practice Based on the Maximum Entropy Method in a Water Engineering Economics Course

Author:

Zhou Runjuan1ORCID,Sun Yingke1,Shao Shuai1,Zhang Kuo1,Zhang Ming2ORCID

Affiliation:

1. School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China

2. School of Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China

Abstract

The purpose of this paper is to put forward a decision model with wide applicability and differentiated decision scheme scores so as to improve the ability of students to learn during a water engineering economics course. The main novelty and contributions of this paper are that the multi-attribute decision-making method proposed is more objective and does not require rich subjective experience from decision-makers in the application process, which is particularly suitable for beginners who are learning in a water engineering economics course. The method involves standardizing each index value of the decision scheme first, constructing the objective function of maximum entropy distribution, calculating the weight of each index by the genetic algorithm, and finally ranking the pros and cons of the scheme according to the score of each scheme. The example results of three water engineering scheme decisions show that the maximum entropy model proposed in this paper can achieve reasonable decision results, and there is a large degree of differentiation between the decision schemes. The proposed scheme, a decision maximum entropy model, has wide applicability, can improve the rationality of the decisions made regarding water engineering schemes, and can be popularized and applied when teaching decision-making in water engineering economics courses.

Funder

Anhui Provincial Natural Science Foundation

Key project of the University Natural Science Research Project of Anhui Province

Quality Engineering Project of Anhui Polytechnic University

Quality Engineering Project of Anhui Province

Science and Technology Project of Wuhu City

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3