A New Rough Set Classifier for Numerical Data Based on Reflexive and Antisymmetric Relations

Author:

Ishii YoshieORCID,Iwao KokiORCID,Kinoshita TsugukiORCID

Abstract

The grade-added rough set (GRS) approach is an extension of the rough set theory proposed by Pawlak to deal with numerical data. However, the GRS has problems with overtraining, unclassified and unnatural results. In this study, we propose a new approach called the directional neighborhood rough set (DNRS) approach to solve the problems of the GRS. The information granules in the DNRS are based on reflexive and antisymmetric relations. Following these relations, new lower and upper approximations are defined. Based on these definitions, we developed a classifier with a three-step algorithm, including DN-lower approximation classification, DN-upper approximation classification, and exceptional processing. Three experiments were conducted using the University of California Irvine (UCI)’s machine learning dataset to demonstrate the effect of each step in the DNRS model, overcoming the problems of the GRS, and achieving more accurate classifiers. The results showed that when the number of dimensions is reduced and both the lower and upper approximation algorithms are used, the DNRS model is more efficient than when the number of dimensions is large. Additionally, it was shown that the DNRS solves the problems of the GRS and the DNRS model is as accurate as existing classifiers.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3