Robust Adaptive Backstepping Motion Control of Underwater Cable-Driven Parallel Mechanism Using Improved Linear Model Predictive Control

Author:

Zhao Jiafeng1ORCID,Qin Yuanqin2,Hu Chaocheng1,Xu Guohua1,Xu Kan3,Xia Yingkai4ORCID

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

3. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China

4. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

Abstract

This paper proposes a novel motion-tracking control methodology for an underwater cable-driven parallel mechanism (CDPM) that achieves calculation of dynamic tension constraint values, tension planning, parameter linearization, and motion tracking. The control objective is divided into three sub-objectives: motion tracking, horizontal displacement suppression, and cable-tension restriction. A linear model predictive control (LMPC) method is designed to plan cable tensions for motion-tracking and displacement suppression. The robust adaptive backstepping controller converts cable tension into winch speed based on the joint-space method and command filtering. Moreover, the X−swapping method is used to linearize and identify the time−varying nonlinear parameters. An essential prerequisite for restricting cable tension is to obtain cable-tension constraint values. A novel dynamic minimum tension control (DMTC) method, based on the equivalent control concept, is proposed for this aim. The DMTC can adaptively obtain the lower cable-tension threshold through the platform posture and motion status, anchor distribution position, and cable integrity status. Compared to traditional fixed tension constraint values, DMTC can more effectively cope with sudden changes in cable tension than fixed tension constraints. Finally, several simulations are carried out to verify the effectiveness and robustness of the proposed approach.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3