Design of a Highly Compatible Underwater Wireless Power Transfer Station for Seafloor Observation Equipment

Author:

Cai Tianhao1ORCID,Lyu Feng12ORCID,Wang Tianzhi1,Huang Fushi2

Affiliation:

1. State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

2. Center for Marine Science and Technology, Tongji University, Shanghai 201804, China

Abstract

Conventional cabled seafloor observatories (CSOs) power in-situ instruments via wet-mated or dry-mated direct electrical contact (DEC) connectors to achieve long-term and real-time observation. However, the DEC connectors have high risks of water leakage and short circuits in power feeding, especially under high water pressure. This paper proposes a highly compatible underwater station based on inductive wireless power transfer (IPT) technology to address the above reliability issue. A novel energy transmitter with runway-structure coils is applied to the proposed underwater station to cover a sufficient power feeding area so that various in-situ equipment can be powered with desirable misalignment tolerance. The magnetic field distribution is analyzed by both derivation and finite element analysis (FEA) methods, and the principal parameters of the transmitter are further optimized and compared with both the mixed-integer sequential quadratic programming (MISQP) algorithm and the evolutionary algorithm (EA) for better performance. The same results show a reliable optimization process. The WPT circuit characteristics are also investigated to power different loads and improve the power transmission efficiency. The output power decreases, and the transmission efficiency rises and then decreases as the load increases. In addition, receivers with higher mutual inductance have better transmission performance. A prototype of the underwater station has been tested both in air and in water, and the experimental results have proven it can power multiple seafloor observation instruments stably and achieve compatibility requirements. The maximum output power of the station prototype for testing is 100 W, and the maximum overall transmission efficiency is 61%.

Funder

Shanghai Science and Technology Innovation Initiative

National Natural Science Foundation of China

Interdisciplinary Key Project of Tongji University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3