Investigation of Vortex-Induced Vibration of Double-Deck Truss Girder with Aerodynamic Mitigation Measures

Author:

Yao Gang1,Chen Yuxiao1,Yang Yang1ORCID,Zheng Yuanlin2,Du Hongbo1ORCID,Wu Linjun1

Affiliation:

1. Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. Chongqing City Infrastructure Construction Investment Co., Ltd., Chongqing 400014, China

Abstract

The long-span double-deck truss girder bridge has become a recommend structural form because of its good performance on traffic capacity. However, the vortex-induced vibration (VIV) characteristics for double-deck truss girders are more complicated and there is a lack of related research. In this research, wind tunnel tests were utilized to investigate the VIV characteristics of a large-span double-deck truss girder bridge. Meanwhile, the VIV suppression effect of the aerodynamic mitigation measures was measured. Furthermore, the VIV suppression mechanism was studied from the perspective of vortex shedding characteristics. The results indicated that the double-deck truss girder had a significant VIV when the wind attack angles were +3° and +5°. The aerodynamic mitigation measures had an influence on the VIV response of the double-deck truss girder. The upper chord fairing and lower chord inverted L-shaped deflector plate played a crucial role in suppressing VIV. Numerical analysis indicated that vortex shedding above the upper deck or in the wake region may dominate vertical VIV, while vortex shedding in the wake region of the lower deck may dominate torsional VIV. The upper chord fairing and lower chord inverted L-shaped deflector plate disrupted the original vortex shedding pattern in both regions, thereby suppressing VIV. This research can provide a foundation for bridge design and vibration suppression measures for large-span double-deck truss girder bridges.

Funder

Chongqing City Infrastructure Construction Investment Co., Ltd.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3