Physical Consistent Path Planning for Unmanned Surface Vehicles under Complex Marine Environment

Author:

Wang Fang12,Bai Yong3,Zhao Liang3ORCID

Affiliation:

1. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China

2. Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin 150001, China

3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Abstract

The increasing demand for safe and efficient maritime transportation has underscored the necessity of developing effective path-planning algorithms for Unmanned Surface Vehicles (USVs). However, the inherent complexities of the ocean environment and the non-holonomic properties of the physical system have posed significant challenges to designing feasible paths for USVs. To address these issues, a novel path planning framework is elaborately designed, which consists of an optimization model, a meta-heuristic solver, and a Clothoid-based path connector. First, by encapsulating the intricate nature of the ocean environment and ship dynamics, a multi-objective path planning problem is designed, providing a comprehensive and in-depth portrayal of the underlying mechanism. By integrating the principles of the candidate set random testing initialization and adaptive probability set, an enhanced genetic algorithm is devised to fully exploit the underlying optimization problem in constrained space, contributing to the global searching ability. Accounting for the non-holonomic constraints, the fast-discrete Clothoid curve is capable of maintaining and improving the continuity of the path curve, thereby promoting strong coordination between the planning and control modules. A thorough series of simulations and comparisons conducted in diverse ocean scenarios has conclusively demonstrated the effectiveness and superiority of the proposed path planning framework.

Funder

Stable Supporting Fund of Science and Technology on Underwater Vehicle Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3