Time-Series Hourly Sea Surface Temperature Prediction Using Deep Neural Network Models

Author:

Farhangi Farbod1ORCID,Sadeghi-Niaraki Abolghasem2,Safari Bazargani Jalal2ORCID,Razavi-Termeh Seyed Vahid2ORCID,Hussain Dildar3ORCID,Choi Soo-Mi2ORCID

Affiliation:

1. Geoinformation Technology, Center of Excellence, Faculty of Geodesy & Geomatics Engineering, K. N. Toosi University of Technology, Tehran 19697-15433, Iran

2. Department of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul 05006, Republic of Korea

3. Department of Data Science, Sejong University, Seoul 05006, Republic of Korea

Abstract

Sea surface temperature (SST) is crucial in ocean research and marine activities. It makes predicting SST of paramount importance. While SST is highly affected by different oceanic, atmospheric, and climatic parameters, few papers have investigated time-series SST prediction based on multiple features. This paper utilized multi features of air pressure, water temperature, wind direction, and wind speed for time-series hourly SST prediction using deep neural networks of convolutional neural network (CNN), long short-term memory (LSTM), and CNN–LSTM. Models were trained and validated by different epochs, and feature importance was evaluated by the leave-one-feature-out method. Air pressure and water temperature were significantly more important than wind direction and wind speed. Accordingly, feature selection is an essential step for time-series SST prediction. Findings also revealed that all models performed well with low prediction errors, and increasing the epochs did not necessarily improve the modeling. While all models were similarly practical, CNN was considered the most suitable as its training speed was several times faster than the other two models. With all this, the low variance of time-series data helped models make accurate predictions, and the proposed method may have higher errors while working with more variant features.

Funder

MSIT

IITP

the Ministry of Trade, Industry and Energy

the Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of water temperature of Sebou estuary (Morocco) using ANN and LR;Journal of Applied Water Engineering and Research;2024-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3