Vulnerability of Clean-Label Poisoning Attack for Object Detection in Maritime Autonomous Surface Ships

Author:

Lee Changui1ORCID,Lee Seojeong2ORCID

Affiliation:

1. Software Testing Center, Korea Conformity Laboratories, Changwon 51395, Republic of Korea

2. Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

Abstract

Artificial intelligence (AI) will play an important role in realizing maritime autonomous surface ships (MASSs). However, as a double-edged sword, this new technology brings forth new threats. The purpose of this study is to raise awareness among stakeholders regarding the potential security threats posed by AI in MASSs. To achieve this, we propose a hypothetical attack scenario in which a clean-label poisoning attack was executed on an object detection model, which resulted in boats being misclassified as ferries, thus preventing the detection of pirates approaching a boat. We used the poison frog algorithm to generate poisoning instances, and trained a YOLOv5 model with both clean and poisoned data. Despite the high accuracy of the model, it misclassified boats as ferries owing to the poisoning of the target instance. Although the experiment was conducted under limited conditions, we confirmed vulnerabilities in the object detection algorithm. This misclassification could lead to inaccurate AI decision making and accidents. The hypothetical scenario proposed in this study emphasizes the vulnerability of object detection models to clean-label poisoning attacks, and the need for mitigation strategies against security threats posed by AI in the maritime industry.

Funder

Korea Institute of Marine Science and Technology Promotion

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3