Experimental Study on the Effects of Waves and Current on Ice Melting

Author:

He Tianyi1,Hu Huijie1,Tang Ding1,Chen Xu1,Meng Jing1,Cao Yong1,Lv Xianqing12ORCID

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China

2. Physical Oceanography Laboratory/CIMST, Ocean University of China, Qingdao 266100, China

Abstract

Ice melting plays a crucial role in ocean circulation and global climate. Laboratory experiments were used to study the dynamic mechanisms of the influence of waves and currents on ice melting. The results showed that under near stable air temperature and water temperature conditions, the ice melting rate was significantly greater with waves than that without waves, as well as the higher the wave height, the greater the melting rate. This is related to the increase in the contact area between ice and water by waves. Further research was carried out to observe the flow field at different locations on the ice bottom, ice sides, and behind the ice by particle image velocimetry (PIV) and dyeing experiments. At different flow velocities, the changes in the side melting rate and bottom melting rate were not the same. Meltwater is attached to the bottom in the form of plume at low background flow velocity, which leads to the slowness of the heat exchange between the ice with a higher ambient temperature. Therefore, the melting of the ice bottom and the ice side were slower at low flow velocity. At high background flow velocity, there is strong shear instability and vortex at the ice bottom and behind the ice. The dissipation and mixing effects caused by vortices accelerate the melting of the ice bottom and the ice back. The thermodynamic factors, such as air temperature and water temperature, had significant impacts in the experiments. Further research needs to improve the accuracy of temperature control of experimental equipment. Computational fluid dynamics and sensitive tests of numerical simulation may also be carried out on ice melting.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3