LEPF-Net: Light Enhancement Pixel Fusion Network for Underwater Image Enhancement

Author:

Yan Jiaquan1,Wang Yijian2,Fan Haoyi3,Huang Jiayan4,Grau Antoni5ORCID,Wang Chuansheng5

Affiliation:

1. Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou 350121, China

2. College of Mathematics and Data Science, Minjiang University, Fuzhou 350108, China

3. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China

4. New Engineering Industry College, Putian University, Putian 351100, China

5. Department of Automatic Control Technical, Polytechnic University of Catalonia, 08034 Barcelona, Spain

Abstract

Underwater images often suffer from degradation due to scattering and absorption. With the development of artificial intelligence, fully supervised learning-based models have been widely adopted to solve this problem. However, the enhancement performance is susceptible to the quality of the reference images, which is more pronounced in underwater image enhancement tasks because the ground truths are not available. In this paper, we propose a light-enhanced pixel fusion network (LEPF-Net) to solve this problem. Specifically, we first introduce a novel light enhancement block (LEB) based on the residual block (RB) and the light enhancement curve (LE-Curve) to restore the cast color of the images. The RB is adopted to learn and obtain the feature maps from an original input image, and the LE-Curve is used to renovate the color cast of the learned images. To realize the superb detail of the repaired images, which is superior to the reference images, we develop a pixel fusion subnetwork (PF-SubNet) that adopts a pixel attention mechanism (PAM) to eliminate noise from the underwater image. The PAM adapts weight allocation to different levels of a feature map, which leads to an enhancement in the visibility of severely degraded areas. The experimental results show that the proposed LEPF-Net outperforms most of the existing underwater image enhancement methods. Furthermore, among the five classic no-reference image quality assessment (NRIQA) indicators, the enhanced images obtained by LEPF-Net are of higher quality than the ground truths from the UIEB dataset.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3