Theoretical Analysis Method for Roll Motion of Popup Data Communication Beacons

Author:

Song Yuanjie12,Chi Haoyuan1,Yu Liang1,Wang Chen1,Tian Chuan1

Affiliation:

1. Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The popup data communication beacon (PDCB) can send data to the shore and ships through the BeiDou navigation satellite system (BDS) when it surfaces. The data can be collected by a deep-sea landing vehicle (DSLV) and transmitted using a magnetic induction coil. PDCBs can reduce the cost of DSLV recovery and redeployment. Whether the data can be successfully sent mainly depends on the outlet height and roll angle of the PDCB. Thus, accurately assessing the effect of the roll angle on data transmission is crucial. In this study, first, the differential equation of roll motion was preliminarily established using the small-amplitude wave theory along with the shape characteristics of the PDCB. Next, the nonlinear term of the recovery moment was processed using the Linz Ted Poincaré method. Then, the wave current force was analyzed using the Morrison theoretical formula along with an additional inertia moment calculation formula that is suitable for slender cylindrical small buoys. Finally, the theoretical calculation results were verified using the computational fluid dynamics (CFD) method and pool test. The roll angle error of the theoretical calculation was within 5%. Thus, the heave and roll response of PDCBs can be evaluated using theoretical calculation methods. The proposed calculation formula of additional inertia moment has guiding significance for the further optimization of the structure.

Funder

The Major Scientific and Technological Projects

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3