Robust IMM Filtering Approach with Adaptive Estimation of Measurement Loss Probability for Surface Target Tracking

Author:

Chen Chen1ORCID,Zhou Weidong1ORCID,Gao Lina2ORCID

Affiliation:

1. Department of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. Department of Measurement and Control Engineering, School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

A suitable jump Markov system (JMS) filtering approach provides an efficient technique for tracking surface targets. In complex surface target tracking situations, due to the joint influences of lost measurements with an unknown probability and heavy-tailed measurement noise (HTMN), the estimation accuracy of conventional interacting multiple model (IMM) methods may be seriously degraded. Aiming to address the filtering issues in JMSs with HTMNs and random measurement losses, this paper presents an IMM filtering approach with the adaptive estimation of unknown measurement loss probability. In this study, we assumed that the measurement noises obey student’s t-distributions and then proposed Bernoulli random variables (BRVs) to characterize the random measurement loss. Notably, by converting the two likelihood functions from the weighted sum form to exponential multiplication, we established hierarchical Gaussian state space models to directly utilize the variational inference method. The system state vectors, unknown distribution parameters, BRVs, and unknown measurement loss probabilities were estimated simultaneously according to the variational Bayesian inference in the IMM framework. The results of maneuvering target tracking simulations verified that the presented filtering approach demonstrated superior estimation accuracy compared to existing IMM filters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3