Abstract
Background: Deregulated neutrophil extracellular traps (NETs) formation is implicated in various diseases, including ANCA-associated vasculitis and pulmonary fibrosis (PF). Lung involvement is frequent in AAV, and interstitial lung diseases (ILDs) are strongly related to MPO-ANCA positivity and mainly reported in microscopic polyangiitis. The association between AAV and ILD is a strong indicator of poor prognosis and limited survival. Neutrophils, ANCA and NET interplay in PF development in AAV. This study aimed to review the literature concerning the implications of NET in lung fibrogenesis specifically focused on AAV associated with ILD, and the potential of NET as a theranostic marker. Methods: Through scoping review methodology, we used a descriptive thematic analysis to understand the pathogenic role of NETs in patients with AAV and pulmonary fibrosis and their further role as a theranostic marker of this disease. Results: The implications of NET in the pathogenesis of AAV and ILD, as well as an association between these two diseases, have been identified, but the underlying pathophysiological mechanisms are still unknown. The pharmacological or genetic inhibition of NET release reduces disease severity in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. In this regard, despite the lack of clinical data, we may hypothesise that an optimal management of AAV-ILD patients would require not only B-cells targeted therapy, but also NETs inhibition. Conclusion: Preliminary findings seem to display a lack of efficacy of traditional immunosuppressants, such as Rituximab, in this subset of patients, while to date no patients suffering from a definite ILD have been enrolled in clinical trials. Further insights would be provided by their employment, as a combination treatment, in common clinical practice. Although we can imagine that the inhibition of NETs in patients with AAV-ILD could reduce severity and mortality, we still lack the scientific basis that could improve our understanding of the disease from a molecular point of view.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics