Free-Energy Profile Analysis of the Catalytic Reaction of Glycinamide Ribonucleotide Synthetase

Author:

Yamamoto NorifumiORCID,Sampei Genichi,Kawai GotaORCID

Abstract

The second step in the de novo biosynthetic pathway of purine is catalyzed by PurD, which consumes an ATP molecule to produce glycinamide ribonucleotide (GAR) from glycine and phosphoribosylamine (PRA). PurD initially reacts with ATP to produce an intermediate, glycyl-phosphate, which then reacts with PRA to produce GAR. The structure of the glycyl-phosphate intermediate bound to PurD has not been determined. Therefore, the detailed reaction mechanism at the molecular level is unclear. Here, we developed a computational protocol to analyze the free-energy profile for the glycine phosphorylation process catalyzed by PurD, which examines the free-energy change along a minimum energy path based on a perturbation method combined with the quantum mechanics and molecular mechanics hybrid model. Further analysis revealed that during the formation of glycyl-phosphate, the partial atomic charge distribution within the substrate molecules was not localized according to the formal charges, but was delocalized overall, which contributed significantly to the interaction with the charged amino acid residues in the ATP-grasp domain of PurD.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3