Abstract
Significant lymph node shrinkage is common in patients with nasopharyngeal carcinoma (NPC) throughout radiotherapy (RT) treatment, causing ill-fitted thermoplastic masks (IfTMs). To deal with this, an ad hoc adaptive radiotherapy (ART) may be required to ensure accurate and safe radiation delivery and to maintain treatment efficacy. Presently, the entire procedure for evaluating an eligible ART candidate is time-consuming, resource-demanding, and highly inefficient. In the artificial intelligence paradigm, the pre-treatment identification of NPC patients at risk for IfTMs has become greatly demanding for achieving efficient ART eligibility screening, while no relevant studies have been reported. Hence, we aimed to investigate the capability of computed tomography (CT)-based neck nodal radiomics for predicting IfTM-triggered ART events in NPC patients via a multi-center setting. Contrast-enhanced CT and the clinical data of 124 and 58 NPC patients from Queen Elizabeth Hospital (QEH) and Queen Mary Hospital (QMH), respectively, were retrospectively analyzed. Radiomic (R), clinical (C), and combined (RC) models were developed using the ridge algorithm in the QEH cohort and evaluated in the QMH cohort using the median area under the receiver operating characteristics curve (AUC). Delong’s test was employed for model comparison. Model performance was further assessed on 1000 replicates in both cohorts separately via bootstrapping. The R model yielded the highest “corrected” AUC of 0.784 (BCa 95%CI: 0.673–0.859) and 0.723 (BCa 95%CI: 0.534–0.859) in the QEH and QMH cohort following bootstrapping, respectively. Delong’s test indicated that the R model performed significantly better than the C model in the QMH cohort (p < 0.0001), while demonstrating no significant difference compared to the RC model (p = 0.5773). To conclude, CT-based neck nodal radiomics was capable of predicting IfTM-triggered ART events in NPC patients in this multi-center study, outperforming the traditional clinical model. The findings of this study provide valuable insights for future study into developing an effective screening strategy for ART eligibility in NPC patients in the long run, ultimately alleviating the workload of clinical practitioners, streamlining ART procedural efficiency in clinics, and achieving personalized RT for NPC patients in the future.
Funder
Innovation and Technology Commission
The Hong Kong Polytechnic University, The Government of the Hong Kong Special Administrative Region
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献