The Enclosed Intestinal Microbiome: Semiochemical Signals from the Precambrian and Their Disruption by Heavy Metal Pollution

Author:

Smith David,Palacios-Pérez MiryamORCID,Jheeta SohanORCID

Abstract

It is increasingly likely that many non-communicable diseases of humans and associated animals are due to the degradation of their intestinal microbiomes, a situation often referred to as dysbiosis. An analysis of the resultant diseases offers an opportunity to probe the function of these microbial partners of multicellular animals. In our view, it now seems likely that vertebrate animals and their microbiomes have coevolved throughout the Ediacaran–Cambrian transition and beyond, operating by semiochemical messaging between the multicellular host and its microbial community guest. A consideration of the overall role of the mutualistic intestinal microbiome as an enclosed bioreactor throws up a variety of challenging concepts. In particular: the significance of the microbiome with respect to the immune system suggests that microeukaryotes could act as microbial sentinel cells; the ubiquity of bacteriophage viruses implies the rapid turnover of microbial composition by a viral-shunt mechanism; and high microbial diversity is needed to ensure that horizontal gene transfer allows valuable genetic functions to be expressed. We have previously postulated that microbes of sufficient diversity must be transferred from mother to infant by seemingly accidental contamination during the process of natural birth. We termed this maternal microbial inheritance and suggested that it operates alongside parental genetic inheritance to modify gene expression. In this way, the adjustment of the neonate immune system by the microbiome may represent one of the ways in which the genome of a vertebrate animal interacts with its microbial environment. The absence of such critical functions in the neonate may help to explain the observation of persistent immune-system problems in affected adults. Equally, granted that the survival of the guest microbiome depends on the viability of its host, one function of microbiome-generated semiochemicals could be to facilitate the movement of food through the digestive tract, effectively partitioning nutrition between host and guest. In the event of famine, downregulation of microbial growth and therefore of semiochemical production would allow all available food to be consumed by the host. Although it is often thought that non-communicable diseases, such as type 2 diabetes, are caused by consumption of food containing insufficient dietary fibre, our hypothesis suggests that poor-quality food is not the prime cause but that the tendency for disease follows the degradation of the intestinal microbiome, when fat build-up occurs because the relevant semiochemicals can no longer be produced. It is the purpose of this paper to highlight the possibility that the origins of the microbiome lie in the Precambrian and that the disconnection of body and microbiome gives rise to non-communicable disease through the loss of semiochemical signalling. We further surmise that this disconnect has been largely brought about by heavy metal poisoning, potentially illuminating a facet of the exposome, the sum total of environmental insults that influence the expression of the genetic inheritance of an animal.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3