Multi-Planar VMAT Plans for High-Grade Glioma and Glioblastoma Targeting the Hypothalamic-Pituitary Axis Sparing

Author:

Cheung Eva Y. W.,Ng Shirley S. H.,Yung Sapphire H. Y.,Cheng Dominic Y. T.,Chan Fandy Y. C.,Cheng Janice K. Y.

Abstract

Background: This study aimed to identify the better arc configuration of volumetric modulated arc therapy (VMAT) for high-grade glioma and glioblastoma, focusing on a dose reduction to the hypothalamic–pituitary axis through an analysis of dose-volumetric parameters, as well as a correlation analysis between the planned target volume (PTV) to organs at risk (OAR) distance and the radiation dose. Method: Twenty-four patients with 9 high-grade glioma and 15 glioblastomas were included in this study. Identical CT, MRI and structure sets of each patient were used for coplanar VMAT (CO-VMAT), dual planar VMAT (DP-VMAT) and multi-planar VMAT (MP-VMAT) planning. The dose constraints adhered to the RTOG0825 and RTOG9006 protocols. The dose-volumetric parameters of each plan were collected for statistical analysis. Correlation analyses were performed between radiation dose and PTV-OARs distance. Results: The DP-VMAT and MP-VMAT achieved a significant dose reduction to most nearby OARs when compared to CO-VMAT, without compromising the dose to PTV, plan homogeneity and conformity. For centrally located OARs, including the hypothalamus, pituitary, brain stem and optic chiasm, the dose reductions ranged from 2.65 Gy to 3.91 Gy (p < 0.001) in DP-VMAT and from 2.57 Gy to 4 Gy (p < 0.001) in MP-VMAT. Similar dose reduction effects were achieved for contralaterally located OARs, including the hippocampus, optic nerve, lens and retina, ranging from 1.06 Gy to 4.37 Gy in DP-VMAT and from 0.54 Gy to 3.39 Gy in MP-VMAT. For ipsilaterally located OARs, DP-VMAT achieved a significant dose reduction of 1.75 Gy to Dmax for the optic nerve. In the correlation analysis, DP-VMAT and MP-VMAT showed significant dose reductions to centrally located OARs when the PTV-OAR distance was less than 4 cm. In particular, DP-VMAT offered better sparing to the optic chiasm when it was located less than 2 cm from the PTV than that of MP-VMAT and CO-VMAT. DP-VMAT and MP-VMAT also showed better sparing to the contralateral hippocampus and retina when they were located 3–8 cm from the PTV. Conclusion: The proposed DP-VMAT and MP-VMAT demonstrated significant dose reductions to centrally located and contralateral OARs and maintained the high plan qualities to PTV with good homogeneity and conformity when compared to CO-VMAT for high-grade glioma and glioblastoma. The benefit in choosing DP-VMAT and MP-VMAT over CO-VMAT was substantial when the PTV was located near the hypothalamus, pituitary, optic chiasm, contralateral hippocampus and contralateral retina.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3