An Increase in Peripheral Temperature following Cocaine Administration Is Mediated through Activation of Dopamine D2 Receptor in Rats

Author:

Chang Suchan,Ryu Yeonhee,Bang Se Kyun,Jang Han Byeol,Ahn DanBi,Kim Hyung Kyu,Lee Hubert,Kim Sang ChanORCID,Lee Bong Hyo,Kim Hee Young

Abstract

Drug addiction has become a worldwide problem, affecting millions of people across the globe. While the majority of mechanistic studies on drug addiction have been focused on the central nervous system, including the mesolimbic dopamine system, the peripheral actions of drugs of abuse remain largely unknown. Our preliminary study found that the systemic injection of cocaine increased peripheral skin temperature. This led us to our present study, which investigated the mechanisms underlying the increase in peripheral temperature following cocaine injection. Male Sprague Dawley rats were anesthetized with pentobarbital sodium, and peripheral skin temperature measurements were taken using a thermocouple needle microprobe and an infrared thermal camera. Cocaine injection caused an acute rise in peripheral body temperature, but not core body temperature, about 10 min after injection, and the temperature increases were occluded by systemic injection of dopamine D2 receptor antagonist L741,626, but not D1 receptor antagonist SCH23390. In addition, systemic administration of bromocriptine, a dopamine D2 receptor agonist, significantly increased peripheral temperature. Infrared thermal imaging showed that the thermal increases following cocaine injection were predominantly in the distal areas of the forelimbs and hindlimbs, relative to core body temperature. Treatment with cocaine or bromocriptine decreased the size of skin blood vessels without affecting the expression of dopamine D2 receptors. These results suggest that increased peripheral temperature in skin following cocaine injection is associated with the activation of the dopamine D2 receptor.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3