Expiratory Peak Flow and Minute Ventilation Are Significantly Increased at High Altitude versus Simulated Altitude in Normobaria

Author:

Netzer Nikolaus C.,Rausch Linda K.ORCID,Frieß Matthias,Strohl Kingman P.,Schilz Robert,Decker MichaelORCID,Pramsohler Stephan

Abstract

Simulated altitude (normobaric hypoxia, NH) is used to study physiologic hypoxia responses of altitude. However, several publications show differences in physiological responses between NH and hypobaric conditions at altitude (hypobaric hypoxia, HH). The causality for these differences is controversially discussed. One theory is that the lower air density and environmental pressure in HH compared to NH lead to lower alveolar pressure and therefore lower oxygen diffusion in the lung. We hypothesized that, if this theory is correct, due to physical laws (Hagen-Poiseuille, Boyle), resistance respectively air compression (Boyle) at expiration should be lower, expiratory flow higher, and therefore peak flow and maximum expiratory flow (MEF) 75–50 increased in hypobaric hypoxia (HH) vs. normobaric hypoxia (NH). To prove the hypothesis of differences in respiratory flow as a result of lower alveolar pressure between HH and NH, we performed spirography in NH at different simulated altitudes and the corresponding altitudes in HH. In a cross over study, 6 healthy subjects (2 f/4 m, 28.3 ± 8.2 years, BMI: 23.2 ± 1.9) performed spirography as part of spiroergometry in a normobaric hypoxic room at a simulated altitude of 2800 m and after a seven-hour hike on a treadmill (average incline 14%, average walking speed 1.6 km/h) to the simulated summit of Mauna Kea at 4200 m. After a two-month washout, we repeated the spirometry in HH on the start and top of the Mauna Kea hiking trail, HI/USA. Comparison of NH (simulated 4200 m) and HH at 4200 m resulted in increased pulmonary ventilation during exercise (VE) (11.5%, p < 0.01), breathing-frequency (7.8%, p < 0.01), peak expiratory flow PEF (13.4%, p = 0.028), and MEF50 (15.9%, p = 0.028) in HH compared to NH, whereas VO2max decreased by 2%. At 2800 m, differences were only trendy, and at no altitude were differences in volume parameters. Spirography expresses higher mid expiratory flows and peak flows in HH vs. NH. This supports the theory of lower alveolar and small airway pressure due to a lower air density resulting in a lower resistance.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3