An IoT-Based GeoData Production System Deployed in a Hospital

Author:

Samama Nel1ORCID,Patarot Alexandre2

Affiliation:

1. SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France

2. SNPA SAS, Cartobat®, 87200 Saint-Junien, France

Abstract

Navigation in large hospitals remains a challenge, especially for patients, visitors and, in some cases, for staff, but in particular it is notable in the case of tracking ambulatory equipment. Current techniques generally seek to reproduce what outdoor navigation systems provide, i.e., “good” accuracy. In many cases, especially in hospitals, reliability is much more important than accuracy. We show that it is possible to realize a simple, reliable system with a low accuracy, but which perfectly fulfills the task assigned in the particular case of tracking stretchers. Optimizing the use of hospital equipment requires the knowledge of its movement. The possibility to access equipment location in real time as well as on the knowledge of the time necessary to move it between two locations allows to predict or to estimate the load and possibly to scale the necessary number of stretchers, and thus the availability of the stretcher bearers. In this paper, an approach of the real-time location of these devices is proposed, and it is called “symbolic”. The principle is described, as well as the practical implementation and the data that can be retrieved. In the second part, an analysis of the results obtained is provided in two directions: the location of stretchers and the determination of travel times. The methodology followed is described, and it is shown that a correct positioning rate of 90% is reached, which is slightly lower than expected, explained by the chosen practical implementation. Moreover, the average error on the determination of travel times is approximately ten seconds on 2 to 7 min trips. The “reliability” (the terminology of which is discussed at the end of the paper) of the results is related to the simplicity of the approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3