Abstract
The output power and terminal voltage of the fixed speed induction generator fluctuate in the partial load region where the wind speed is below the rated vale, resulting in fluctuations in the grid frequency and voltage. In this paper, a novel pitch angle control strategy has developed by introducing an exponential moving average (EMA) concept from which the controller reference power (signal) can be set for below-rated wind speeds. Therefore, the employed pitch angle controller together with static synchronous compensator (STATCOM), named the unified voltage and pitch angle controller (UVPC), addresses the objective of smoothing the output power and terminal voltage regulation of a wind generator, subjected to below-rated wind speed variations. Moreover, an interval type-2 fuzzy logic technique has incorporated in the pitch angle controller design, since it is more efficient in handling the uncertainties in membership functions and rules than its traditional fuzzy logic counterparts. Simulation results clearly show that the proposed UVPC effectively smoothens out the generator output power and also regulates the terminal voltage at its constant magnitude.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference35 articles.
1. The Global Wind Energy Council Belgiumhttp://www.gwec.net/global-Figures/wind-in-numbers/
2. Application of Induction Generators in Power Systems
3. Wind Power Electrical Systems, Modeling, Simulation and Control 2014 Series: Green Energy and Technology;Rekioua,2014
4. A proposed strategy for power optimization of a wind energy conversion system connected to the grid
5. The Wind Powerhttp://www.thewindpower.net/windfarm_en_86_challicum-hills.php
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献