Innovative Structural Optimization and Dynamic Performance Enhancement of High-Precision Five-Axis Machine Tools

Author:

Behera Ratnakar1,Chan Tzu-Chi1ORCID,Yang Jyun-Sian1

Affiliation:

1. Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin County 632, Taiwan

Abstract

To satisfy the requirements of five-axis processing quality, this article improves and optimizes the machine tool structure design to produce improved dynamic characteristics. This study focuses on the investigation of five-axis machine tools’ static and dynamic stiffness as well as structural integrity. We also include performance optimization and experimental verification. We use the finite element approach as a structural analysis tool to evaluate and compare the individual parts of the machine created in this study, primarily the saddle, slide table, column, spindle head, and worktable. We discuss the precision of the machine tool model and relative space distortion at each location. To meet the requirements of the actual machine, we optimize the structure of the five-axis machine tool based on the parameters and boundary conditions of each component. The machine’s weight was 15% less than in the original design model, the material it was subjected to was not strained, and the area of the structure where the force was considerably deformed was strengthened. We evaluate the AM machine’s impact resistance to compare the vibrational deformation observed in real time with the analytical findings. During modal analysis, all the order of frequencies were determined to be 97.5, 110.4, 115.6, and 129.6 Hz. The modal test yielded the following orders of frequencies: 104, 118, 125, and 133 Hz. Based on the analytical results, the top three order error percentages are +6.6%, +6.8%, +8.1%, and +2.6%. In ME’scope, the findings of the modal test were compared with the modal assurance criteria (MAC) analysis. According to the static stiffness analysis’s findings, the main shaft and screw have quite substantial major deformations, with a maximum deformation of 33.2 µm. Force flow explore provides the relative deformation amount of 26.98 µm from the rotating base (C) to the tool base, when a force of 1000 N is applied in the X-axis direction, which is more than other relative deformation amounts. We also performed cutting transient analysis, cutting spectrum analysis, steady-state thermal analysis, and analysis of different locations of the machine tool. All of these improvements may effectively increase the stiffness of the machine structure as well improve the machine’s dynamic characteristics and increases its machining accuracy. The topology optimization method checks how the saddle affects the machine’s stability and accuracy. This research will boost smart manufacturing in the machine tool sector, leading to notable advantages and technical innovations.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3