Heat Input Control Strategies in DED

Author:

Egorov Sergei12,Soffel Fabian2,Schudeleit Timo1ORCID,Bambach Markus3,Wegener Konrad12

Affiliation:

1. Inspire AG, Technoparkstrasse 1, 8005 Zürich, Switzerland

2. Institute for Machine Tools and Manufacturing, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland

3. Advanced Manufacturing Laboratory, ETH Zürich, Technoparkstrasse 1, 8005 Zürich, Switzerland

Abstract

In the context of directed energy deposition (DED), the production of complex components necessitates precise control of all processing parameters while mitigating undesirable factors like heat accumulation. This research seeks to explore and validate with various materials the impact of a geometry-based analytical model for minimizing heat input on the characteristics and structure of the resultant DED components. Furthermore, it aims to compare this approach with other established methods employed to avoid heat accumulation during production. The geometry of the fabricated specimens was assessed using a linear laser scanner, cross-sections were analyzed through optical microscopy, and the effect on mechanical properties was determined via microhardness measurements. The specimens manufactured using the developed analytical model exhibited superior geometric precision with lower energy consumption without compromising mechanical properties.

Funder

Innosuisse

GF Machining Solutions

Fraisa SA

EMPA

Turbo Systems Switzerland Ltd.

Publisher

MDPI AG

Reference19 articles.

1. (2022). Standard Terminology for Additive Manufacturing—General Principles—Terminology (Standard No. ISO/ASTM52900-15).

2. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing;Attaran;Bus. Horiz.,2017

3. Laser-assisted directed energy deposition of nickel super alloys: A review;Jinoop;Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.,2019

4. A physical modeling and predictive simulation of the laser cladding process;Wirth;Addit. Manuf.,2018

5. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V;Wu;J. Mater. Process. Technol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3