Abstract
Sparkgap are most widely used closing switches in various high-voltage pulsed power systems and its reliable operation at desired voltage level is very essential. Conventionally by adjusting the filling gas pressure inside sparkgap switch, breakdown voltage level is altered but switching characteristics such as stability in hold-off voltage at various pressures, breakdown delay, plasma channel formation, and erosion rate are mainly dictated by adopted electrode profile and its dimensions, inter-electrode gap length and polarity. In this paper, experimental results obtained on breakdown characteristics of four different electrode geometries—Plane Parallel, Hemi-spherical, Bruce, and Rogowski and also a generalized criterion for fixing major dimensions of electrode and inter-gap length to ensure uniform electric field in the inter-electrode region are reported. All electrodes are of brass material and have common radius and thickness of 25 mm and 18 mm, respectively (surface finish <1 µm). Experiments performed on various electrode profiles in gap lengths of 2 mm to 5 mm range with pure nitrogen (N2) gas pressurization up to 50 psi reveal that among all profiles, Rogowski performs most reliably having stable hold-off voltage in wide operating range. Hold-off voltage magnitude and breakdown delay was commonly obtained higher for negative polarity in all trials. A comprehensive overview of experimental investigation reported herein compares suitability of various electrode profiles and polarity for reliable switching.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献