Indigo Carmine Degradation in Water Induced by a Pulsed Positive Corona Discharge in Air: Discharge and Postdischarge Effects

Author:

Ferreyra Matías G.ORCID,Fina Brenda L.,Milardovich Natalio J.,Chamorro Juan C.,Santamaría Brenda,Balestrasse Karina,Prevosto Leandro

Abstract

In recent years, one of the fastest growing technological applications in the field of nonthermal plasmas is the degradation of organic contaminants of water. In this work, the degradation of indigo carmine (IC) in water induced by a pulsed positive corona discharge operating in ambient air is reported. Degradation levels in different volumes of IC in solution with distilled water treated with different plasma exposure times immediately after discharge (0 h), and in the postdischarge up to 24 h were examined. To explain the IC discoloration in the postdischarge phase, a chemical model was developed. The stability of the reactive species in solution nitrate (NO3−), nitrite (NO2−) and hydrogen peroxide (H2O2), as well as the properties of the solution (electrical conductivity, pH) were also measured. The results suggest that the hydroxyl radical (OH˙) as well as ozone (O3) are the main oxidizing species during the discharge phase, being primarily formed in the gas phase through plasma-mediated reactions and then transferred to the liquid by diffusion, while the OH˙ production in the bulk liquid through the decomposition of peroxinitrous acid (O=NOOH) plays a major role in the IC degradation during the postdischarge. These results are associated with a noticeably increase in the energy-yield values observed at 24 h post-treatment.

Funder

National Technological University

Agencia Nacional de Promoción Científica y Tecnológica

National Scientific and Technical Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference31 articles.

1. Erratum to: Introduction to Plasma Physics and Controlled Fusion;Chen,2018

2. Gas Discharge Physics;Raizer,1991

3. Thermal Plasmas: Fundamentals and Applications;Boulos,1994

4. Non-thermal atmospheric pressure discharges

5. The 2017 Plasma Roadmap: Low temperature plasma science and technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3