A Global Model Study of Plasma Chemistry and Propulsion Parameters of a Gridded Ion Thruster Using Argon as Propellant

Author:

Magaldi Bernardo,Karnopp JúliaORCID,da Silva Sobrinho ArgemiroORCID,Pessoa RodrigoORCID

Abstract

This work reports on the (zero-dimensional) global model study of argon plasma chemistry for a cylindrical thruster based on inductively coupled plasma (ICP) whose output has a system of two grids polarized with each other with direct current potential. The global model developed is based on particle and energy balance equations, where the latter considers both charged and neutral species. Thus, the model allows the determination of the neutral gas temperature. Finally, this study also investigated the role of excited species in plasma chemistry especially in the ions production and its implications for propulsion parameters, such as thrust. For this, the study was carried out in two different scenarios: (1) one taking into account the metastable species Arr and Arp (multi-step ionization), and (2) the other without these species (single-step ionization). Results indicates a distinct behavior of electron temperature with radiofrequency (RF) power for the investigated cases. On the other hand, the gas temperature is almost the same for investigated power range of up to 900 W. Concern propulsion analysis, a thrust of 40 mN at 450 W was verified for case (1), which represents a remarkable thrust value for electric thrusters.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference49 articles.

1. Effect of the COVID-19 pandemic on public managers’ attitudes toward digital transformation

2. Perspectives, frontiers, and new horizons for plasma-based space electric propulsion

3. Numerical simulation of plasma discharge in RF ion thruster;Rakhimov;Proceedings of the 36th International Electric Propulsion Conference,2019

4. Supersonic plasma beams with controlled speed generated by the alternative low power hybrid ion engine (ALPHIE) for space propulsion

5. Fundamentals of Electric Propulsion: Ion and Hall Thrusters;Goebel,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3