A Plasma-Based Decontamination Process Reveals Potential for an in-Process Surface-Sanitation Method

Author:

Weihe Thomas,Schnabel UtaORCID,Andrasch Mathias,Stachowiak Jörg,Tübbecke Frank,Ehlbeck JörgORCID

Abstract

Methods, which use an indirect plasma treatment for the inactivation of microorganisms in foods, claim a vastly growing field of research. This paper presents a method that uses plasma-processed air (PPA) as a sanitizer. In addition to a sanitation concept for the decontamination of produce in the value chain, the presented method offers a possible application as an “in-process” surface sanitation. PPA provides antimicrobial-potent species, which are predominantly reactive nitrogen species (RNS); this has an outstanding groove penetration property. In an experimental approach, surfaces, made from materials, which are frequently used for the construction of food-processing plants, were inoculated with different microorganisms. Listeria monocytogenes (ATCC 15313), Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 10538), Salmonella enterica subsp. enterica serovar Typhimurium (ATCC 43971), and Salmonella enterica subsp. enterica serovar Enteritidis (ATCC 13076) are all microorganisms that frequently appear in foods and possess the risk for cross-contamination from the plant to the produce or vice versa. The contaminated samples were treated for various treatment times (1–5 min) with PPA of different antimicrobial potencies. Subsequently, the microbial load on the specimens was determined and compared with the load of untreated samples. As a result, reduction factors (RF) up to several log10-steps were obtained. Although surface and the bacterial strain showed an influence on the RF, the major influence was seen by a prolongation of the treatment time and an increase in the potency of the PPA.

Funder

Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3