Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters

Author:

Soppa Mariana A.ORCID,Silva BrennerORCID,Steinmetz FrançoisORCID,Keith DarrylORCID,Scheffler DanielORCID,Bohn NiklasORCID,Bracher AstridORCID

Abstract

Spaceborne imaging spectroscopy, also called hyperspectral remote sensing, has shown huge potential to improve current water colour retrievals and, thereby, the monitoring of inland and coastal water ecosystems. However, the quality of water colour retrievals strongly depends on successful removal of the atmospheric/surface contributions to the radiance measured by satellite sensors. Atmospheric correction (AC) algorithms are specially designed to handle these effects, but are challenged by the hundreds of narrow spectral bands obtained by hyperspectral sensors. In this paper, we investigate the performance of Polymer AC for hyperspectral remote sensing over coastal waters. Polymer is, in nature, a hyperspectral algorithm that has been mostly applied to multispectral satellite data to date. Polymer was applied to data from the Hyperspectral Imager for the Coastal Ocean (HICO), validated against in situ multispectral (AERONET-OC) and hyperspectral radiometric measurements, and its performance was compared against that of the hyperspectral version of NASA’s standard AC algorithm, L2gen. The match-up analysis demonstrated very good performance of Polymer in the green spectral region. The mean absolute percentage difference across all the visible bands varied between 16% (green spectral region) and 66% (red spectral region). Compared with L2gen, Polymer remote sensing reflectances presented lower uncertainties, greater data coverage, and higher spectral similarity to in situ measurements. These results demonstrate the potential of Polymer to perform AC on hyperspectral satellite data over coastal waters, thus supporting its application in current and future hyperspectral satellite missions.

Funder

Bundesministerium für Wirtschaft und Technologie

Deutsches Zentrum für Luft- und Raumfahrt

US Environmental Protection Agency 321 Pathfinder Innovation Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3