Study of Rotational Motions Caused by Multiple Mining Blasts Recorded by Different Types of Rotational Seismometers

Author:

Teisseyre Krzysztof P.,Dudek MichałORCID,Jaroszewicz Leszek R.,Kurzych Anna T.ORCID,Stempowski Leopold

Abstract

Digging two vertical shafts with the multiple blasts technique gave the opportunity to measure the induced angular motions in a horizontal plane with well-defined positions of sources. Three kinds of rotation rate sensors, sharing an underground location, were used. Two of them—a Fiber-Optic System for Rotational Events & phenomena Monitoring (FOSREM) and a prototypical seismometer housing the liquid-filled torus—sensed the rotation, while a microarray of two double-pendulum seismometers sensed both the rotation and symmetric strain. The FOSREM was sampled at 656.168 Hz, while all the others were only sampled at 100 Hz. There were considerable differences within the results gathered from the mining blasts, which should be attributed to two causes. The first one is the difference in principles of the operation and sampling rates of the devices used, while the other is the complex and spatially variable character of the studied wave fields. Additionally, we established that the liquid-filled sensor, due to its relatively low sensitivity, proved to be viable only during a registration of strong ground motions. Overall, a comparative study of three different rotational seismometers was performed during mining-induced strong ground motions with well-localized sources.

Funder

Ministry of the National Defense Republic of Poland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. History of Shock Waves, Explosions and Impact. A Chronological and Biographical Reference;Krehl,2009

2. Shock Waves in Solids. Digital Repository, Iowa State Universityhttps://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=5350&context=rtd

3. Comparison of seismic effects during deep tunnel excavation with different methods

4. Blast design and vibration control at an underground metal mine for the safety of surface structures

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3