Thermodynamic Modeling of the Uranium–Tellurium System: Estimation of the Uncertainties by a Bayesian Approach

Author:

Guéneau Christine,Lawrence Eva,Klein Thierry,Gamboa FabriceORCID

Abstract

Under irradiation, the formation of fission products in the (U,Pu)O2 fuel with time has a substantial effect on its chemistry. In particular, migration of the most volatile fission products (Cs, Te, I, Mo) from the center to the periphery of the fuel pellet is induced by the large radial thermal gradient. To predict the thermodynamic properties of the irradiated fuel, thermodynamic modeling of the complex multi-component (Cs-I-Te-Mo)–(U-Pu)–O system is performed using the CALPHAD method. In this work, the thermodynamic assessment of the U–Te sub-system is performed. The literature review reveals a lack of experimental data as well as scattering and inconsistency of some of the data. In particular, no thermodynamic data exist on the liquid. From this review, input thermodynamic and phase diagram data are carefully selected. The Gibbs energy functions are then adjusted by fitting these data. An overall good agreement is obtained with all the selected data except for the enthalpy of formation for UTe which is underestimated by 13% by our model. This could be due to an inconsistency between the enthalpy of formation and vapor pressure data. In a second step, the uncertainties on the thermodynamic parameters and their propagation on the calculated thermodynamic and phase diagram data are estimated using a Bayesian approach. The analysis shows that there are too many parameters (22) for too few data points (120 points). The uncertainties are thus large on some of the calculated data. Moreover the inconsistency of some of the data and the lack of thermodynamic data for the liquid makes the model uncertain. New experimental data such as heat capacity, enthalpy of formation for the compounds, and chemical potentials or activities for the liquid phase would improve the reliability of our model. Measurements of phase diagram data in the U–UTe2 region are also required. However this work provides the first detailed uncertainty analysis of the U–Te CALPHAD model. Moreover our approach, contrary to other Bayesian methods, provides an analytical posterior probability distribution and analytical credible intervals for the calculated thermodynamic quantities. It also speeds up the simulation of the uncertainty estimations on the phase diagram.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3