Ionic Liquids as Working Fluids for Heat Storage Applications: Decomposition Behavior of N-Butyl-N-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate

Author:

Nardelli Francesca1ORCID,Berretti Enrico2ORCID,Lavacchi Alessandro2ORCID,Pitzalis Emanuela1ORCID,Freni Angelo1,Pizzanelli Silvia13ORCID

Affiliation:

1. Italian National Council for Research—Institute for the Chemistry of OrganoMetallic Compounds, CNR-ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy

2. Italian National Council for Research—Institute for the Chemistry of OrganoMetallic Compounds, CNR-ICCOM, Via Madonna del Piano 10, 50019 Firenze, Italy

3. Centre for Instrument Sharing (CISUP), University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy

Abstract

Ionic liquids (ILs) represent promising working fluids to be used in thermal energy storage (TES) technologies thanks to their peculiar properties, such as low volatility, high chemical stability, and high heat capacity. Here, we studied the thermal stability of the IL N-butyl-N-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([BmPyrr]FAP), a potential working fluid for TES applications. The IL was heated at 200 °C for up to 168 h either in the absence or in contact with steel, copper, and brass plates to simulate the conditions used in TES plants. High-resolution magic angle spinning nuclear magnetic resonance spectroscopy was found to be useful for the identification of the degradation products of both the cation and the anion, thanks to the acquisition of 1H, 13C, 31P, and 19F-based experiments. In addition, elemental analysis was performed on the thermally degraded samples by inductively coupled plasma optical emission spectroscopy and energy dispersive X-ray spectroscopy. Our analysis shows a significant degradation of the FAP anion upon heating for more than 4 h, even in the absence of the metal/alloy plates; on the other hand, the [BmPyrr] cation displays a remarkable stability also when heated in contact with steel and brass.

Funder

AdP CNR—MiSE PT 22-24 “Progetto Integrato Tecnologie di accumulo elettrochimico e termico”

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3