Influence of Si and SiC Coating on the Microstructures and Mechanical Properties of C/C Bolts

Author:

Sun Guodong1,Tan Zhiqiang1,Zhang Qing2,Zhang Yi2ORCID,Li Xuqin3,Tian Qinglai1,Tang Yuxing1

Affiliation:

1. School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China

2. Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China

3. School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 611730, China

Abstract

High−performance bolts made of carbon/carbon (C/C) composites are necessary for connecting thermally−insulating structural components of aerospace vehicles. To enhance the mechanical properties of the C/C bolt, a new silicon infiltration−modified C/C (C/C−SiC) bolt was developed via vapor silicon infiltration. The effects of silicon infiltration on microstructure and mechanical properties were systematically studied. Findings reveal that dense and uniform SiC−Si coating has been formed after silicon infiltration of the C/C bolt, strongly bonding with the C matrix. Under tensile stress, the C/C−SiC bolt undergoes a tensile failure of studs, while the C/C bolt is subject to the pull−out failure of threads. The breaking strength of the former (55.16 MPa) is 26.83% higher than the failure strength of the latter (43.49 MPa). Under double−sided shear stress, both the crushing of threads and the shear failure of studs occur within two bolts. As a result, the shear strength of the former (54.73 MPa) exceeds that of the latter (43.88 MPa) by 24.73%. According to CT and SEM analysis, matrix fracture, fiber debonding, and fiber bridging are the main failure modes. Therefore, a mixed coating formed by silicon infiltration can effectively transfer loads from coating to carbon matrix and carbon fiber, thereby enhancing the load−bearing capacity of C/C bolts.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan of Shaanxi Province of China

Natural Science Foundation of Sichuan Province

Key Research and Development Program of Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3