An Imputing Technique for Surface Water Extent Timeseries with Streamflow Discharges

Author:

Yin Yue1ORCID,Peña Malaquias1

Affiliation:

1. Department of Civil & Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA

Abstract

A continuous and multi-decadal surface water extent (SWE) record is vital for water resources management, flood risk assessment, and comprehensive climate change impact studies. The advancements in remote sensing technologies offer a valuable tool for monitoring surface water with high temporal and spatial resolution. However, challenges persist due to image gaps resulting from sensor issues and adverse weather conditions during data collection. To address this issue, one way to fill the gaps is by leveraging in situ measurements such as streamflow discharges (SFDs). We investigate the relationship between SFDs and Landsat-derived SWE in the New England region watersheds (eight-digit hydrological unit code (HUC)) on a monthly scale. While previous studies indicate the relationship exists, it remains elusive for larger domains. Recent research suggests using monthly average SFD data from a single stream gage to fill the gaps in SWE. However, as SWE represents a monthly maximum value, relying on a single gage with average values may not capture the complex dynamics of surface water. Our study introduces a novel approach by replacing the monthly average SFD with the maximum day streamflow discharge anomaly (SFDA) within a month. This adjustment aims to better reflect extreme scenarios, and we explore the relationship using ridge regression, incorporating data from all stream gages in the study domain. The SWE and SFDA are both transformed to stabilize the variance. We found that there is no discernible correlation between the magnitude of the correlation and the size of the basins. The correlations vary based on HUC and display a wide range, indicating the variances of the importance of stream gages to each HUC. The maximum correlation is found when the stream gage is located outside of the target HUC, further verifying the complex relationship between SWE and SFDA. Covering over 30 years of data across 45 HUCs, the imputing technique using ridge regression shows satisfactory performance for most of the HUCs analyzed. The results show that 41 out of 45 HUCs achieve a root-mean-square error (RMSE) of less than 10, and 44 out of 45 HUCs exhibit a normalized root-mean-square error (NRMSE) of less than 0.1. Of 45 HUCs, 42 have an R-squared (R2) score higher than 0.7. The Nash–Sutcliffe efficiency index (Ef) shows consistent results with R2, with the relative bias ranging from –0.02 to 0.03. The established relationship serves as an effective imputing technique, filling gaps in the time series of SWE. Moreover, our approach facilitates the identification and visualization of the most significant gages for each HUC, contributing to a more refined understanding of surface water dynamics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3