Benefits of Water-Harvesting Systems (Jessour) on Soil Water Retention in Southeast Tunisia

Author:

Calianno Martin,Fallot Jean-Michel,Ben Fraj Tarek,Ben Ouezdou Hédi,Reynard Emmanuel,Milano MarianneORCID,Abbassi Mohamed,Ghram Messedi Aziza,Adatte Thierry

Abstract

In this paper, we quantify the water balance of Jessour at the scale of agricultural plots. Jessour (plural of Jesr) are ancestral hydro-agricultural systems in the Dahar plateau (southeastern Tunisia). They consist of small dams built across wadis and gullies, which retain rainwater and sediments, hence enabling cropping. Despite arid climate conditions, Jessour allow the culture of the olive tree beyond its ecological limits. Weather monitoring stations were set up and soil moisture sensors installed down to a depth of 1.25 m in the soil in two neighboring gullies in the village of Zammour: one with a Jesr and one without. Laser granulometry and organic matter analyses were carried out on samples collected near the soil moisture sensors. Measurements were recorded from 28 September 2017 to 21 September 2018. From 10 to 12 November 2017, the region received 123.3 mm rainfall. The Jesr retained the equivalent of 410.3 mm of soil moisture to a depth of 1.25 m whereas the value in the gully was 224.6 mm. Throughout the summer of 2018, the soil available water capacity (AWC) remained above 55 mm in the Jesr, while it dropped to zero in the gully. Jessour are thus very suitable hydro-agricultural systems to face the climate changes concerning this fragile region, located in the transition zone between the semi-arid to arid Mediterranean region and the Sahara.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference48 articles.

1. Le pouvoir de l'eau dans le Sud-Tunisien.

2. World irrigation

3. Plaidoyer pour les jessour;Bonvallot,1992

4. Modelling water-harvesting systems in the arid south of Tunisia using SWAT

5. Comportement des ouvrages de petite hydraulique dans la région de Médenine (Tunisie du Sud) au cours des pluies exceptionnelles de mars 1979;Bonvallot;Cahiers ORSTOM Série Sciences Humaines,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3