Temporal-Difference Graph-Based Optimization for High-Quality Reconstruction of MODIS NDVI Data

Author:

Ji Shengtai1,Han Shuxin1,Hu Jiaxin2,Li Yuguang1,Han Jing-Cheng3

Affiliation:

1. Heilongjiang Provincial Ecological Meteorological Center, Harbin 150030, China

2. China National Environmental Monitoring Centre, Beijing 100012, China

3. Water Science and Environmental Research Centre, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

The Normalized Difference Vegetation Index (NDVI) is a crucial remote-sensing metric for assessing land surface vegetation greenness, essential for various studies encompassing phenology, ecology, hydrology, etc. However, effective applications of NDVI data are hindered by data noise due to factors such as cloud contamination, posing challenges for accurate observation. In this study, we proposed a novel approach for employing a Temporal-Difference Graph (TDG) method to reconstruct low-quality pixels in NDVI data. Regarding spatio-temporal NDVI data as a time-varying graph signal, the developed method utilized an optimization algorithm to maximize the spatial smoothness of temporal differences while preserving the spatial NDVI pattern. This approach was further evaluated by reconstructing MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m Grid (MOD13Q1) products over Northwest China. Through quantitative comparison with a previous state-of-the-art method, the Savitzky–Golay (SG) filter method, the obtained results demonstrated the superior performance of the TDG method, and highly accurate results were achieved in both the temporal and spatial domains irrespective of noise types (positively-biased, negatively-biased, or linearly-interpolated noise). In addition, the TDG-based optimization approach shows great robustness to noise intensity within spatio-temporal NDVI data, suggesting promising prospects for its application to similar datasets.

Funder

China National Key R&D Program

Major Basic Research Development Program of the Science and Technology

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Committee

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3