Affiliation:
1. School of Automation Science and Electrical Engineering, Beihang University, Beiijng 100191, China
Abstract
LiDAR has emerged as one of the most pivotal sensors in the field of navigation, owing to its expansive measurement range, high resolution, and adeptness in capturing intricate scene details. This significance is particularly pronounced in challenging navigation scenarios where GNSS signals encounter interference, such as within urban canyons and indoor environments. However, the copious volume of point cloud data poses a challenge, rendering traditional iterative closest point (ICP) methods inadequate in meeting real-time odometry requirements. Consequently, many algorithms have turned to feature extraction approaches. Nonetheless, with the advent of diverse scanning mode LiDARs, there arises a necessity to devise unique methods tailored to these sensors to facilitate algorithm migration. To address this challenge, we propose a weighted point-to-plane matching strategy that focuses on local details without relying on feature extraction. This improved approach mitigates the impact of imperfect plane fitting on localization accuracy. Moreover, we present a classification optimization method based on the normal vectors of planes to further refine algorithmic efficiency. Finally, we devise a tightly coupled LiDAR-inertial odometry system founded upon optimization schemes. Notably, we pioneer the derivation of an online gravity estimation method from the perspective of S2 manifold optimization, effectively minimizing the influence of gravity estimation errors introduced during the initialization phase on localization accuracy. The efficacy of the proposed method was validated through experimentation employing various LiDAR sensors. The outcomes of indoor and outdoor experiments substantiate its capability to furnish real-time and precise localization and mapping results.
Funder
National Science Foundation of China
Aeronautical Science Foundation of China
National key research and development program of China