One Algorithm to Rule Them All? Defining Best Strategy for Land Surface Temperature Retrieval from NOAA-AVHRR Afternoon Satellites

Author:

Julien Yves1ORCID,Sobrino José A.1ORCID,Jiménez-Muñoz Juan-Carlos1ORCID

Affiliation:

1. Global Change Unit, Image Processing Laboratory, University of Valencia, 46980 Paterna, Spain

Abstract

The NOAA-AVHRR (National Oceanographic and Atmospheric Administration–Advanced Very High-Resolution Radiometer) archive includes data from 1981 onwards, which allow for estimating land surface temperature (LST), a key parameter for the study of global warming as well as surface characterization. However, algorithms for LST retrieval were developed before the latest sensors and were based on more reduced atmospheric datasets. Here, we present 50 novel sets of coefficients for an LST retrieval algorithm from NOAA-AVHRR sensors, to which we added one historical methodology, which we validate against historical in situ as well as independent satellite data. This validation shows that the historical algorithm performs surprisingly well, with an in situ RMSE below 1.5 K and a quasi-null bias when compared with independent satellite data. A couple of the novel algorithms also perform within expectations (errors below 1.5 K), so any of these could be used for the complete processing of the AVHRR dataset. In our case, considering consistency with previous works, we opt for the use of the historical algorithm, now also tested for more recent periods.

Funder

Thales Alenia Space España S.A

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3