System Design of Ocean Temperature Measurement System Using Brillouin Lidar Based on Dual Iodine Cells

Author:

Yang Fu1ORCID,Chen Wenhao12,Liang Luqiang1,Fang Chunqi3,He Yan4

Affiliation:

1. College of Science, Donghua University, Shanghai 201620, China

2. Avic Shanghai Aviation Electric Co., Ltd., Shanghai 201101, China

3. Nanjing Institute of Advanced Laser Technology, Nanjing 210038, China

4. Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

Abstract

Ocean temperature profile information plays a key role in understanding the marine environment. The passive remote-sensing technique can provide sea surface temperature measurements over large areas. However, it is sensitive to the atmospheric environment and cannot provide seawater temperature profile information. The lidar technique is the only way to carry out seawater temperature profile measurements over large areas. However, it is insufficient for measuring speed, the receiving field, stability, spectral integrity, simple system structures, and so on. Therefore, we propose a Brillouin lidar method combining two iodine cells at different temperatures to realize temperature measurements, where one iodine cell is used as a filter to absorb the elastic scattering and the other as an edge detection discriminator to obtain the seawater temperature measurement. The system has a fast measurement speed, a large receiving field, a simple system structure, and high stability. The system feasibility was verified via principle simulation and real iodine absorption curve measurements. For an ocean temperature of [5 °C, 15 °C], a laser wavelength of 532.10495 nm was more appropriate, corresponding to the iodine pool temperature combinations of 50 °C and 78 °C. For an ocean temperature of [15 °C, 32 °C], a laser wavelength of 532.10518 nm was more appropriate, corresponding to the iodine cell temperature combinations of 60 °C and 78 °C. When the laser intensity reached a measurement precision of 1‰, the temperature could be predicted with an accuracy of up to 0.2 K. This work shows promise as a potential solution for seawater temperature profile measurement.

Funder

National Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3