Multi-Teacher D-S Fusion for Semi-Supervised SAR Ship Detection

Author:

Zhang Xinzheng1ORCID,Li Jinlin1,Li Chao2,Liu Guojin1

Affiliation:

1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

2. Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China

Abstract

Ship detection from synthetic aperture radar (SAR) imagery is crucial for various fields in real-world applications. Numerous deep learning-based detectors have been investigated for SAR ship detection, which requires a substantial amount of labeled data for training. However, SAR data annotation is time-consuming and demands specialized expertise, resulting in deep learning-based SAR ship detectors struggling due to a lack of annotations. With limited labeled data, semi-supervised learning is a popular approach for boosting detection performance by excavating valuable information from unlabeled data. In this paper, a semi-supervised SAR ship detection network is proposed, termed a Multi-Teacher Dempster-Shafer Evidence Fusion Net-work (MTDSEFN). The MTDSEFN is an enhanced framework based on the basic teacher–student skeleton frame, comprising two branches: the Teacher Group (TG) and the Agency Teacher (AT). The TG utilizes multiple teachers to generate pseudo-labels for different augmentation versions of unlabeled samples, which are then refined to obtain high-quality pseudo-labels by using Dempster-Shafer (D-S) fusion. The AT not only serves to deliver weights of its own teacher to the TG at the end of each epoch but also updates its own weights after each iteration, enabling the model to effectively learn rich information from unlabeled data. The combination of TG and AT guarantees both reliable pseudo-label generation and a comprehensive diversity of learning information from numerous unlabeled samples. Extensive experiments were performed on two public SAR ship datasets, and the results demonstrated the effectiveness and superiority of the proposed approach.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3