Research on Jianghan Plain Water System Dynamics and Influences with Multiple Landsat Satellites

Author:

Dong Feiyan1,Huang Jie2,Meng Linkui1,Li Linyi1ORCID,Zhang Wen1

Affiliation:

1. School of Remote Sensing Information Engineering, Wuhan University, Wuhan 430072, China

2. School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

Abstract

The study of the spatio-temporal distribution and evolution trends of water resources in large regions plays an important role in the study of regional water resource planning, regional economic and social development, and water disasters. In this study, a Landsat multi-index relationship and water probability thresholding method is developed based on the Google Earth Engine (GEE) platform, which can support the integration of multiple Landsat satellites. The algorithm jointly combines multiple remote sensing metrics along with the calculation of water probability to produce an interannual water body product for the Jianghan Plain on a 20-year time series. The results indicate that the Landsat multi-index relationship algorithm used in this study has high accuracy in extracting long-term water bodies in extensive, flat terrain areas such as the Jianghan Plain, with an overall accuracy (OA) of 97.23%. By analyzing the water body products and landscape patterns, we have identified the following features: (1) From 2002 to 2021, the changes in river water bodies in the Jianghan Plain were relatively small, and some lakes experienced a shrinkage in area. Overall, there is a strong correlation between water distribution and precipitation. (2) The complexity index of water bodies shows a strong negative correlation with effective irrigation area and population, indicating a strong mutual influence between water bodies and socio-economic activities. (3) Through the study of the distribution characteristics of built-up areas and the water system, it was found that for large rivers, the larger the size of the river, the more built-up areas are nearby. Most extensive built-up areas are located near large rivers. This study contributes to providing methods and data support for urban planning, water resource management, and disaster research in the Jianghan Plain.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Reference43 articles.

1. Spatial Equilibrium Evaluation and Spatial Correlation Analysis of Water Resources in China;He;Water Resour. Prot.,2023

2. The spatial temporal characteristics and driving force analysis of water area landscape pattern changes on the Jianghan Plain;Chang;Adv. Water Sci.,2023

3. A review of research on remote sensing image water extraction;Su;Land Resour. Remote Sens.,2021

4. Yang, C.J., and Zhou, C.H. (2000). Extracting Residential Areas on the TM Imagery. J. Remote Sens.

5. Vector constrained object-oriented high-resolution remote sensing image water extraction;Cui;Remote Sens. Inf.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3