A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery

Author:

Su Zhenfeng1,Xiang Longwei1ORCID,Steffen Holger2ORCID,Jia Lulu3,Deng Fan1,Wang Wenliang1,Hu Keyu1,Guo Jingjing1,Nong Aile1,Cui Haifu1,Gao Peng4

Affiliation:

1. School of Geosciences, Yangtze University, Wuhan 430100, China

2. Geodetic Infrastructure, Lantmäteriet, 80182 Gävle, Sweden

3. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China

4. School of Resources and Environment, Linyi University, Linyi 276000, China

Abstract

Land surface water is a key part in the global ecosystem balance and hydrological cycle. Remote sensing has become an effective tool for its spatio-temporal monitoring. However, remote sensing results exemplified in so-called water indices are subject to several limitations. This paper proposes a new and effective water index called the Sentinel Multi-Band Water Index (SMBWI) to extract water bodies in complex environments from Sentinel-2 satellite imagery. Individual tests explore the effectiveness of the SMBWI in eliminating interference of various special interfering cover features. The Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) method and confusion matrix along with the derived accuracy evaluation indicators are used to provide a threshold reference when extracting water bodies and evaluate the accuracy of the water body extraction results, respectively. The SMBWI and eight other commonly used water indices are qualitatively and quantitatively compared through vision and accuracy evaluation indicators, respectively. Here, the SMBWI is proven to be the most effective at suppressing interference of buildings and their shadows, cultivated lands, vegetation, clouds and their shadows, alpine terrain with bare ground and glaciers when extracting water bodies. The overall accuracy in all tests was consistently greater than 96.5%. The SMBWI is proven to have a high ability to identify mixed pixels of water and non-water, with the lowest total error among nine water indices. Most notably, better results are obtained when extracting water bodies under interfering environments of cover features. Therefore, we propose that our novel and robust water index, the SMBWI, is ready to be used for mapping land surface water with high accuracy.

Funder

National Natural Science Foundation of China

open fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3