Improving the Gross Primary Productivity Estimation by Simulating the Maximum Carboxylation Rate of Maize Using Leaf Age

Author:

Zhang Xin1,Wang Shuai1,Wang Weishu1,Rong Yao1,Zhang Chenglong1ORCID,Wang Chaozi1,Huo Zailin1

Affiliation:

1. Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China

Abstract

Although the maximum carboxylation rate (Vcmax) is an important parameter to calculate the photosynthesis rate for the terrestrial biosphere models (TBMs), current models could not satisfactorily estimate the Vcmax of a crop because the Vcmax is always changing during crop growth period. In this study, the Breathing Earth System Simulator (BESS) and light response curve (LRC) were combined to invert the time-continuous Vm25 (Vcmax normalized to 25 °C) using eddy covariance measurements and remote sensing data in five maize sites. Based on the inversion results, we propose a Two-stage linear model using leaf age to estimate crop Vm25. The leaf age can be readily calculated from the date of emergence, which is usually recorded or can be readily calculated from the leaf area index (LAI), which can be readily obtained from high spatiotemporal resolution remote sensing images. The Vm25 used to calibrate and validate our model was inversely solved by combining the BESS and LRC and using eddy covariance measurements and remote sensing data in five maize sites. Our Two-stage linear model (R2 = 0.71–0.88, RMSE = 5.40–7.54 μmol m−2 s−1) performed better than the original BESS (R2 = 0.01–0.67, RMSE = 13.25–18.93 μmol m−2 s−1) at capturing the seasonal variation in the Vm25 of all of the five maize sites. Our Two-stage linear model can also significantly improve the accuracy of maize gross primary productivity (GPP) at all of the five sites. The GPP estimated using our Two-stage linear model (underestimated by 0.85% on average) is significantly better than that estimated by the original BESS model (underestimated by 12.60% on average). Overall, our main contributions are as follows: (1) by using the BESS model instead of the BEPS model coupled with the LRC, the inversion of Vm25 took into account the photosynthesis process of C4 plants; (2) the maximum value of Vm25 (i.e., PeakVm25) during the growth and development of maize was calibrated; and (3) by using leaf age as a predictor of Vm25, we proposed a Two-stage linear model to calculate Vm25, which improved the estimation accuracy of GPP.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Research project of Inner Mongolia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3