Efficient and Robust Adaptive Beamforming Based on Coprime Array Interpolation

Author:

Chen Siming1ORCID,Wu Xiaochuan1,Li Shujie1,Deng Weibo1,Zhang Xin1ORCID

Affiliation:

1. The School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Unlike uniform linear arrays (ULAs), coprime arrays require fewer physical sensors yet provide higher degrees of freedom (DOF) and larger array apertures. However, due to the existence of “holes” in the differential co-array, the target detection performance deteriorates, especially in adaptive beamforming. To address these challenges, this paper proposes an efficient and robust adaptive beamforming algorithm leveraging coprime array interpolation. The algorithm eliminates unwanted signals and uses the Gauss–Legendre quadrature method to reconstruct an Interference-plus-Noise Covariance Matrix (INCM), thereby obtaining the beamforming coefficients. Unlike previous techniques, we utilize a virtual interpolated ULA to expand the aperture, enabling the acquisition of a high-dimensional covariance matrix. Additionally, a projection matrix is constructed to eliminate unwanted signals from the received data, greatly enhancing the accuracy of INCM reconstruction. To address the high computational complexity of integral operations used in most INCM reconstruction algorithms, we propose an approximation based on the Gauss–Legendre quadrature, which reduces the computational load while maintaining accuracy. This algorithm avoids the array aperture loss caused by using only the ULA segment in the difference co-array and improves the accuracy of INCM reconstruction. Simulation and experimental results show that the performance of the proposed algorithm is superior to the compared beamformers and is closer to the optimal beamformer in various scenarios.

Funder

National Natural Science Foundation of China

Songjiang Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3