Affiliation:
1. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
Abstract
The eastern margin of the Tibetan Plateau is one of the regions with the most severe landslide disasters on a global scale. With the intensification of seismic activity around the Tibetan Plateau and the increase in extreme rainfall events, the prevention of landslide disasters in the region is facing serious challenges. This article selects the Bailong River Basin located in this region as the research area, and the historical landslide data obtained from high-precision remote sensing image interpretation combined with field validation are used as the sample library. Using machine learning algorithms and data-driven landslide susceptibility assessment as the methods, 17 commonly used models and 17 important factors affecting the development of landslides are selected to carry out the susceptibility assessment. The results show that the BaggingClassifier model shows advantageous applicability in the region, and the landslide susceptibility distribution map of the Bailong River Basin was generated using this model. The results show that the road and population density are both high in very high and high susceptible areas, indicating that there is still a significant potential landslide risk in the basin. The quantitative evaluation of the main influencing factors emphasizes that distance to a road is the most important factor. However, due to the widespread utilization of ancient landslides by local residents for settlement and agricultural cultivation over hundreds of years, the vast majority of landslides are likely to have occurred prior to human settlement. Therefore, the importance of this factor may be overestimated, and the evaluation of the factors still needs to be dynamically examined in conjunction with the development history of the region. The five factors of NDVI, altitude, faults, average annual rainfall, and rivers have a secondary impact on landslide susceptibility. The research results have important significance for the susceptibility assessment of landslides in the complex environment of human–land interaction and for the construction of landslide disaster monitoring and early warning systems in the Bailong River Basin.
Funder
Fundamental Research Funds for the Central Universities
Science and Technology Major Project of Gansu Province
Second Tibetan Plateau Scientific Expedition and Research Program