Use of Landsat Imagery Time-Series and Random Forests Classifier to Reconstruct Eelgrass Bed Distribution Maps in Eeyou Istchee

Author:

Clyne Kevin1,LaRocque Armand1,Leblon Brigitte2,Costa Maycira3

Affiliation:

1. Faculty of Forestry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada

2. Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON P7B 5E1, Canada

3. Department of Geography, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada

Abstract

The eastern coastline of James Bay is known to have been home to sizeable eelgrass beds (Zostera marina L.) which thrived in the bay’s shallow, subarctic waters. The region was subjected to substantial hydroelectric dams, large fires, and other human activities in the past half-century. To assess the impact of these factors on eelgrass beds, a historical reconstruction of eelgrass bed distribution was performed from images acquired by Landsat-5 Thematic Mapper (TM) in 1988, 1991, and 1996 and images of the Landsat-8 Operational Land Imager (OLI) in 2019. All the images were classified using the Random Forests classifier (RF) and assessed for accuracy each year on a bay-wide scale using an independent field validation dataset. The validation data were extracted from an eelgrass bed map established using aerial photos and field surveys in 1986, 1991, and 1995 and from a field survey in 2019. The overall validation accuracy of the classified images (between 72% and 85%) showed good agreement with the other datasets for most locations, providing reassurance about the reliability of the research. This makes it possible to use satellite imagery to detect past changes to eelgrass distribution within a bay. The classified images of 1988 and 1996 were also compared to aerial photos taken in years close to each other at ten sites to determine their ability to assess small eelgrass beds’ shape and presence. Such a comparison revealed that the classified images accurately portrayed eelgrass distribution even at finer scales.

Funder

Cree Nation Government

Niskamoon Corporation

Hydro-Québec and administered through Niskamoon Corporation, a Cree-run organization

MITACS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3