Machine Learning Applications of Convolutional Neural Networks and Unet Architecture to Predict and Classify Demosponge Behavior

Author:

Harrison Dominica,De Leo Fabio Cabrera,Gallin Warren J.ORCID,Mir Farin,Marini SimoneORCID,Leys Sally P.

Abstract

Biological data sets are increasingly becoming information-dense, making it effective to use a computer science-based analysis. We used convolution neural networks (CNN) and the specific CNN architecture Unet to study sponge behavior over time. We analyzed a large time series of hourly high-resolution still images of a marine sponge, Suberites concinnus (Demospongiae, Suberitidae) captured between 2012 and 2015 using the NEPTUNE seafloor cabled observatory, off the west coast of Vancouver Island, Canada. We applied semantic segmentation with the Unet architecture with some modifications, including adapting parts of the architecture to be more applicable to three-channel images (RGB). Some alterations that made this model successful were the use of a dice-loss coefficient, Adam optimizer and a dropout function after each convolutional layer which provided losses, accuracies and dice scores of up to 0.03, 0.98 and 0.97, respectively. The model was tested with five-fold cross-validation. This study is a first step towards analyzing trends in the behavior of a demosponge in an environment that experiences severe seasonal and inter-annual changes in climate. The end objective is to correlate changes in sponge size (activity) over seasons and years with environmental variables collected from the same observatory platform. Our work provides a roadmap for others who seek to cross the interdisciplinary boundaries between biology and computer science.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3