Feature Disentangling Autoencoder for Anomaly Detection of Reactor Core Temperature with Feature Increment Strategy

Author:

Li Heng1,Li Xianmin1,Mao Wanchao1,Chang Junyu2,Chen Xu2,Zhao Chunhui2,Wang Wenhai2

Affiliation:

1. State Key Laboratory of Nuclear Power Safety Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, Guangdong, China

2. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Anomaly detection for core temperature has great significance in maintaining the safety of nuclear power plants. However, traditional auto-encoder-based anomaly detection methods might extract the latent space features with redundancy, which may lead to missing and false alarms. To address this problem, the idea of feature disentangling is introduced under the auto-encoder framework in this paper. First, a feature disentangling auto-encoder (DAE) is proposed where a latent space disentangling loss is designed to disentangle the features. We further propose an incrementally feature disentangling auto-encoder (IDAE), which is the improved version of DAE. In the IDAE model, an incremental feature generation strategy is developed, which enables the model to evaluate the disentangling degree to adaptively determine the feature dimension. Furthermore, an iterative training framework is designed, which focuses on the parameter training of the newly incremented feature, overcoming the difficulty of model training. Finally, we illustrate the effectiveness and superiority of the proposed method on a real nuclear reactor core temperature dataset. IDAE achieves average false alarm rates of 4.745% and 6.315%, respectively, using two monitoring statistics, and achieves average missing alarm rates of 6.4% and 2.9%, respectively, using two monitoring statistics, outperforming the other methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3