Study on Flow Characteristics of Flue Gas and Steam Co-Injection for Heavy Oil Recovery

Author:

Ji Yanmin1,Li Boliang2,Han Zongyuan1,Wang Jian1,Li Zhaomin2,Li Binfei2

Affiliation:

1. Lusheng Petroleum Development Company Limited, SINOPEC Shengli Oilfield Company, Dongying 257000, China

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Flue gas is composed of N2 and CO2, and is often used as an auxiliary agent for oil displacement, with good results and very promising development prospects for co-injection with steam to develop heavy oil. Although research on the oil displacement mechanism of flue gas has been carried out for many years, the flow characteristics of steam under the action of flue gas have rarely been discussed. In this paper, the flow resistance and heat transfer effect of flue gas/flue gas + steam were evaluated by using a one-dimensional sandpack, a flue gas-assisted steam flooding experiment was carried out using a specially customized microscopic visualization model, and the microscopic flow characteristics in the process of the co-injection of flue gas and steam were observed and analyzed. The results showed that flue gas could improve the heat transfer effect of steam whilst accelerating the flow of steam in porous media and reducing the flow resistance of steam. Compared with pure steam, when the volume ratio of flue gas and steam was 1:2, the mobility decreased by 2.8 and the outlet temperature of the sandpack increased by 35 °C. This trend intensified with an increase in the proportion of flue gas. In the microscopic oil displacement experiments, the oil recovery and sweep efficiency of the flue gas and steam co-injection stage increased by 4.7% and 32.9%, respectively, compared with the pure steam injection stage due to the effective utilization of blocky remaining oil and corner remaining oil caused by the expansion of fluid channels, the flow of flue gas foam, and the dissolution and release of flue gas in heavy oil.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3